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SECURITY CLASSIFICATION OF THIS PAGE(Wh.. Date &.tend)

Automatic Word Recognition (AWR) sylten, using a CCD speech analyzer and

current microprocessor technology 7

To answer these questions, three speech analysis techniques were implemented
with CCD analyzers. These techniques include a Discrete Fourier Transform
analysis, a Cepstral analysis, and a Bandpass Filter analysis. The CCD
analyzers were incorporated into a realtime laboratory AWE system based on
a dynamic programming match algorithm.

Speaker dependent word recognition experiments were conducted for a per-
formance comparison of the three CCD based speech analysis techniques.
The data base used in the recognition experiments was based on two vocabu-
laries of 26 and 20 words recorded by eight different speakers. Results
indicated that the Bandpass Filter CCD analyzer provides the best parameters
for isolated word recognition. A recognition accuracy of 99.4% was achieved
on a 20 word vocabulary. The experiments showed that CCD speech analyzers
can provide speech parameters which are useful for accurate realtime word

recognition.

Experiments were "-conducted to measure the speed versus acce.racy
tradeoffs of four speed-up techniques. The techniques were demonstrated to
be worthwhile in an efficient realtime AWR system.

Finally, microprocessor architectures were designed to implement the real-
time AWR system and then evaluated in terms of cost and complexity using
three different microprocessors: the 8-bit Intel 8085A, the 16-bit Motorola

MC68000, and a 16-bit configuration of the AMD 2901A. the three, the
AMD 2901A proved preferabld from both a cost and a peformance standpoint.
Hardware cost projections for an AWE system featuring an AMD 2901A archi-
tecture and a Bandpass Filter CCD analyzer indicate that the hardware com-
ponents for such a system should range between $1,500 for a 52 word vocabu-
lary, to about $12, 700 for a 780 word vocabulary. These costs do not include
custom chip development, detailed hardware design, construction or testing.

ITTDCD is very encouraged by the results obtained in this investigation. It

does appear that an accurate, low cost AWE system could be developed using
a CCD speech analyzer and a microprocessor recognition system.
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EVALUATION

This contract was in support of TPO RiB, Signal Intelligence.

Speech processors have applications to Air Force problems of data entry,

secure personnel entry, connunications, and intelligence. This effort

determined the feasibility of using CCD and microprocessor technology

for speech processors, in order to obtain significant reductions

in cost, size, weight, and power consumption. Additional work is

programmed to refine algorithms and hardware, and to construct a

breadboard Automatic Speech Recognition System.

MELVIN G. MANOR, Jr.
Project Engineer
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Chapter 1: EXEUTIVE SU44AW

This document is the final report from ITTDCD to RADC on Contract

Number F3062-78-C-0359, entitled Solid State Audio/Speech Processor

Analysis. This report details the progress made by ITDCD in evaluating

the feasibility of applying Charge Coupled Devices (CrD'S) and

microprocessors to reduce the cost and complexity of Automatic Speech

Recognition (ASR) systems. ASR systems have the potential of solving many

Air Force command, control, and communication problems. The report answers

two basic questions. First, can CCD devices be used to generate speech

recognition parameters that are useful for accurate low cost speech 4

recognition? Second, what would be the cost and complexity for a realtime
Automatic Word Icognition (AWR) system, using a CCD speech analyzer and

current microprocessor technology?

To answer these questions, ITInD studied four speech analysis
techniques. These techniques include a Discrete Fourier Transform (DMI)

analysis, a Cepstral analysis, a Bandoass Filter (BPF) analysis, and Linear
Predictive Coding (LPC). To provide more realistic data for performance

assessment, the first three techniques were implemented using actual OCD

hardware. For each of these CD) analyzers, software was developed to make

the respective speech parameters mre suitable for realtime word

recognition.

ITECD then incorporated the CCD hardware and software into a realtime

laboratory AWR system. The major hardware ccmponents of this system
include the CCD speech analyzers, a Quintrell signal processor, a PDP-11/60

minicomputer, and two display terminals. Realtime word recognition

software was developed for the Quintrell processor, a high speed signal

processor originally designed by ITICD for narrowband speech transmission

systems. The word recoqnition software is based on a dynamic programming

match algorithm to provide effective time normalization. The laboratory

AWR system was designed to meet the performance goals of the contract:

realtime response on a 20 word vocabulary with better than 99% word

-9-



recogrition accuracy in a speaker dependent mode.

ITTCD employed the laboratory AWR system to conduct a series of word

recognition experiments. These experiments were designed with the intent

of comparing alternative word recognition techniques and algorithms, rather

than demonstratinq the maximum achievable accuracy of a realtime AWR

system. The data base used in the recognition experiments was based on two

vocabularies of 26 and 20 words recorded by eight different speakers.

A first group of experiments was designed and conducted for a

Performance oxaparison of the three CD based speech analysis techniques.

Results obtained from these experiments clearly indicated that the Bandpass
Filter CCD analyzer provides the best parameters for isolated word

recognition. The laboratory AWR system was also used as a test vehicle for

a second group of experiments measuring the speed versus accuracy

tradeoffs of four speed-up techniques. All four of the speed-up algorithms

which were studied were demonstrated to be worthwhile in an efficient

realtime AWR system. A third group of experiments provided an additional

performance evaluation of the Bandpass Filter AWR system. A recognition
accuracy of 99.4% was achieved on a 20 word vocabulary, thus surpassing the

contract performance goal. Overall, the experiments showed that OCD speech

analyzers can provide speech parameters which are useful for accurate

realtime word recognition.

Finally, IT DCD designed and evaluated architectures for

microprocessor based versions of the realtime AWR system. The
microprocessor architectures were evaluated in terms of cost and complexity

for solving various isolated word recognition problems using three
different microprocessors: the 8-bit Intel 8085A, the 16-bit Motorola

MC68000, and a 16-bit configuration of the AMD 2901A. Of the three, the
AMD 2901A proved preferable from both a cost and a performance standpoint.

Hardware cost projections were then made for an AWR system featuring an AMD
2901A architecture and a Bandpass Filter OCD analyzer. These projections

indicate that the hardware components for such a system should range
between $1,500 for a 52 word vocabulary, to about $12,700 for a 780 word

vocabulary. These costs do not include custom chip development, detailed

-10-



hardware aesign, construction or testing.

ITTDCD is very encouraged by the results obtained in this

investigation. It does appear that an accurate, low cost AWR system could

be developed using a CCD speech analyzer and a microprocessor recognition

architecture. A logical next step would be to proceed with the detailed

design, construction, and testing of a deliverable version of such an AWR

system. The system could then be evaluated at an actual Air Fbrce

laboratory or operational site.

Iiw
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Chapter 2: INTROD TION AND TECHNICAL OVERVIEW

This report details the progress made by IT)CD in evaluating the

feasibility of applying Charge Coupled Devices (CCD'S) and microprocessors

to improve the cost, size, weight, and power consumption of Automatic

Speech Recognition (ASR) systems. ASR systems have the potential of

solvinq many Air Force command, control, and communication problems. For

many applications, however, such factors as cost, size, and power must be

reduced. The report answers two basic questions. First, can 0CD devices
be used to generate speech recognition parameters that are useful for

accurate low cost speech recognition? Second, what would be the cost and

colvplexity for a realtime Automatic Word Recognition (AWR) system, using a

CD analyzer and current microprocessor technology?

Four tasks were carried out to answer these questions. In the first

task, simulation studies were performed on an existing Automatic Word

Recognition (AWR) system to develop speech recognition algorithms suitable

for low cost microprocessor implementation. This task also provided

experience with four speech Processing techniques using data from simulated

CXD analyzers. These techniques are Linear Predictive Coding (LPC), a

Discrete Fourier Transform (DFT), a Cepstral analysis, and a Bandpass

Filter analysis (BPF). In the second task, a realtime laboratory AWR

system was desiqned and implemented on a Quintrell processor. This is a

special purpose ITIDCD developed signal processor based on a AMD-2901

microprocessor. It can perform a full LPC analysis/synthesis in

approximately one-half realtime. The AWR system used CICD analyzers to

provide speech parameters, and was designed to imet the performance goals

of the contract: realtime resoonse on a 20 word vocabulary with better than

99% word recognition in a speaker dependent mode. The third task was to

use this realtime AWR system to compare the recognition performance of

actual CCD analyzers. In the final task, a component analysis of the

realtime AWR system was performed to determine the speed/accuracy tradeoff

of various parts of the recognition algorithm, the projected cost of the

CCD hardware analyzers, and the cost and complexity of a microprocessor

-12-



( implementation of the system.

This work was enhanced in two ways by an ITIDCD IR&D program that

focused on developing low cost speech recoqnition systems. First, the IR&D

program developed the OCD analyzers and supporting realtime software. The

availability of real CCD analyzers, though not necessary for completing

this contract, permitted a more realistic comparison of OCD technology than

could have been done with simulated data alone. OCD hardware was built for

three of the speech processing techniques. (The LPC analysis was not

implemented in hardware.) Second, a detailed microprocessor architecture

study of the AWR system was conducted under IR&D for three microprocessors.

These designs were evaluated in terms of cost and complexity for vocabulary

sizes of up to 780 words.

The CCD hardware, the realtime laboratory AV,, system, and the results

of recognition experiments are discussed in subsequent chapters. The

remainder of this chapter gives a technical overview of the ITI)CD AWR

system, the speech processing techniques, and the test paradigm used

throughout the study. Finally the simulation studies are discussed as

background to the following chapters.

2.1 Overview of the ITTCD Automatic Word Recognition System

Figure 2.1 shows a simple block diagram of the ITID AWR system.

Analog speech undergoes a parametric analysis to derive speech parameters

that accurately describe the sounds present in each spoken word. These

parameters are sampled periodically (usually every 10 to 25 ms) to produce

"frames" that represent the time variation of the input. For this

contract, CCD analyzers were evaluated for their ability to perform this

speech analysis step. Separation of the parametric analysis from the rest

of the recognition process is not only natural, but it also permits

developing the AWR system independent of any particular speech analysis

techniaue. In addition, the same AWR system could be used for each CCD

analyzer technique to insure a valid comparison.

-13-
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The beginning and end of each word is found in the endpoint detection

I step by using an energy function derived in the parametric analysis. The

word beginning is detected by summing a clipped energy function over about
200 ms. The energy function is clipped to prevent a high energy burst

(e.g., lip smack) from triggering a false speech detection. Speech is

detected when the sum passes a set threshold, and the beginning of the

speech is marked as the first point in the 200 ms window where the energy

is greater than a "silence" threshold. The word end is similarly detected

when about 100 ms of the energy function remains below the "silence"

threshold.

An unknown word is recognized by comiparing it to the set of reference

templates representing the vocabulary of the system. A template is

generated by speaking the vocabulary word once and storing the paramntric
representation of the word as a template. The comparison between each

template and unknown is performed with a non-linear time alignment process
carried out by the dynamic programming match algorithm (discussed in the

next section). The identity of the template best matching the unknown word
is the system's response.

2:1.1 Dynamic Programming Match Algorithm

Non-linear time alignment between a word template and the unknown word

is necessary to account for the natural time variations between different
utterances of the same word. Figure 2.2 illustrates how a non-linear time

alignment between a template and an unknown is achieved with dynamic

programing. The time frames of the template on the y-axis and the time
frames of the unknown on the x-axis form a matrix of frame-to-frame cells.
(A dotted line is shown on the figure for every five frames of speech.) The

piece-wise linear line cutting diagonally across the matrix shows one of
many Dossible non-linear tine alignment paths. The match score of the path
is equal to the sum (or weighted sum) of the frame-to-frame "sound
similarity" scores for each cell along the path. one common "sound

similarity" score between the parameters of a template frame and the

ixiraeters of an unknown frame is simply the Euclidean. Dynamic

programing finds the "best" non-linear time alignment path within set

-15-
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constraints by findinq at each time cell (i,j) the best partial path in the

three adjacent cells to extend to (i,j) as shown in the figure. This

process begins in the lower left corner and continues up one column at a

time until all of the unknown utterance is processed.

The particular dynamic programning algorithm used by the ITMCD AWR

system is one studied by Sakoe and Chiba [1]. Each path through the

dynamic programming matrix is constrained so that a diagonal step has to be

taken after a horizontal or vertical step. This constraint has the effect

of restricting the slope of a path to be between one-half and two. Thus,

the length of the spoken word must be between one-half and twice the length

of its template. In addition,, the constraint prevents more than two frames

of the unknown word to be matched against one frame of the template and

vice-versa.

The dynamic programming equation below shows how the scores of the

partial paths ending at times (i-l,j), (i,j-l), and (i-l,j-l) are com pared

to see which path is the best one to extend to time (i,j).

Sij h min (Si.l,j + d, Si,j_1 + d, Si-l,j-l + 2d)

where

Sij is a partial path score at cell (i,j)
d is the Euclidian distance for cell (i,j)

The constraints given above are used in conjunction with this equation to

see which path is extended. The final path score is normalized by dividing

by the sum of the lengths of the unknown and the template to yield a match

score that can be compared across all templates.

-17-



I.I2.1.2 Algorithm Speed-up and Storage Feduction TLchniques

The dynamic programming recognition algorithm as presented above

places a large ccoputational burden on the AWR system. Also, the

parametric frame representation of speech requires considerable data memory

for template storage. Less expensive recognition algorithms exist and more

compact data representations have been used, but with a corresponding

degradation in performance. ITICD elected to use the more accurate

alqorithm and representation, and to depend on other techniques to reduce

the computational and memory requirements. Four techniques were

investigated: principal component dimensionality reduction, variable frame
rate encoding, corner pruning, and tenplate pruning. The first two

techniques reduce the data rate resulting from the speech analysis and

therefore reduce both the computational and storage burden on the system.

The second two techniques of corner and template pruning reduce computation

by limiting unneccessary matching in the dynamic programming algorithm.

These techniques are described in the paragraphs below.

2.1.2.1 Principal O:mponent Dimensionality Feduction

The n coefficients of each frame of speech from a front end analysis

technique define a point in an n-dimensional feature space. The

dimensionality of this feature space can be reduced while minimizing any

reduction in the variation described by the speech data by the method of

principal component analysis [2]. Pols first applied this analysis to

speech recognition [3]. In the analysis, the variances along each

dimension, as well as the covariances between the dimensions, are

calculated over a large sample of speech data. The eigenvector of the

covariance matrix with the largest eiqenvalue defines a dimension in the

original feature space which accounts for as much of the variance as

possible. The eigenvector with the next largest eigenvalue defines a new

orthogonal dimension which accounts for as much of the variance as possible

that was not accounted for by the first eigenvector. Thus a set of m

eigenvectors (m<n) can be found which account for a high percentage of the

variance of the speech data. A point in the n-dimensional feature space is

mapped to the reduced feature space by ultipling the n-coefficient frame

vector by the n-by-m eigenvector matrix. The resulting m-coefficient frame

vector requires less data memory to store and less computation when it is
-18- i



compared against other frame vectors in the dynamic programing algorithm.

2.1.2.2 Variable Frame Rate Encoding

Variable frame rate encoding achieves data reduction by reducing the

number of frames in each template and unknown. This again reduces the

amount of data memory required for storing templates and also reduces the

size of the dynamic programming matrix. Variable frame rate encoding

reduces the number of frames in areas where the speech features change

slowly (e.g. in sustained sounds like vowels), but retains more frames in

areas where the speech features change more rapidly (e.g. liquids and
stops). This is accomplished by simply ccwparing (via a Euclidean distance

metric) the next input frame to the last frame retained. If the new frame
is quite similar to the last frame according to a set threshold, the new

frame is rejected. However, if the new frame is different from the last

frame, the new frame is passed on to the next step in the analysis process.

2.1.2.3 Corner Pruning

Figure 2.3 illustrates dynamic programing with corner pruning (the

shaded portion). Corner pruning eliminates, with a minimum of added

s6ftware, those frame-to-frame comparisons which are not part of a good

time alignment path. The width of the remaining band in the dynamic
programming matrix (measured by the number of horizontal frames across the
band) can be adjusted to obtain the greatest decrease in computation costs

while maintaining the same recognition performance. Obviously, if the

bandwidth is too narrow, the best alignment path is cut off and performance

suffers.

2.1.2.4 Template Pruning

In template pruning, as the unknown word is processed, the partial

match scores of the temolates are compared. If the partial match score of

a particular template is sufficiently worse (according to a threshold) than
the best partial match score over all the templates, that template is

pruned. Recognition continues on the reduced set of templates. This is

-19-
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illustrated in Fiqure 2.4. For each frame of the unknown utterance (time

j), the score of the best partial path of a template t ending in time j is

identified by finding the minimum score, rjt ' of the column. If for some

template t, rjt is greater than Rj (the minimum for all templates) by some

constant threshold C, then template t is pruned. This method of template

pruning is similar to one used by Itakura [4].

2.2 Speech Analysis Techniques

Four speech analysis techniques were investigatod as alternative first

stages in speech recognition systems. These techniques included Linear
Predictive Coding (LPC), Bandpass Filtering (BPF), Discrete Fourier

Transform (DF), and Cepstral analysis. They all accept analog speech
(time domain data) as input and produce signal parameters for each time

frame that are used to represent a smoothed approximation of the speech

spectrum. The lower nlot of Figure 2.5 shows a speech spectrum for the

vowel in "beet". The rapid oscillations of the plot are due to the pitch

harmonics, whereas the overall shape of the plot is due to the shape of the

vocal tract and is therefore characteristic of the sound being generated.

To be useful for speech recognition, the spectrum must be smoothed so that

.the signal parameters most closely represent the sounds generated by a

speaker and not the pitch of his voice.

2.2.1 Linear Predictive Coding

Linear Predictive Coding (lw) analysis approximates the speech

spectrum by an all pole model. The smoothed line shown in Figure 2.5 is an

all pole approximation of the spectrum. The nuMber of poles used in the

model (generally between 8 and 14) determine how closely the model

approximates the spectrum. Unique in LPC analysis is the fact that the

n odel most closely matches the spectrum at the higher energys, i.e., at the

vocal tract resonances, or formants of the spectrum. Thus LPC analysis can

correctly model formants that are close together, while smoothing the

qpectrum between formants. This is gererally not true for the other

analysis techniques studied here. LPC analysis works best for the spectrum

of non-nasalized voiced sounds. The spectrum of nasals contain zeros which
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cannot be correctly modeled by an all pole model. The LPC coefficients

modeling two spectra are typically ccmpared in speech recognition using the

Itakura "log ratio of LPC residuals" [4].

2.2.2 Bandpass Filtering

Bandpass Filtering (BPF) analysis converts the speech spectrum into a
nower spectral density representation. The number and width of the bands
determine the smoothing of the spectrum. By careful selection of the

filter bands, variations due to pitch harmonics are avoided and the
"critical bandwidths" of the ear are approximated. BPF coefficients from
two different sounds can be compared using a Euclidean metric.

2.2.3 Discrete Fourier Transform

A Discrete Fourier Transform (DFT) analysis for speech generally has

between 128 and 512 speech samples per transform. DFI coefficients,
however, are seldom used directly. Rather, the coefficients are used to

produce a power spectral density representation like that obtained by
bandpass filtering. Each "bandpass filter" is obtained by summing a set of

frequency adjacent DFT coefficients. Again a Euclidean metric is used to
iompare the representations of different sounds.

2.2.4 Cepstral Analysis

The cepstrum is defined as the Fourier transform of the logarithm
nower spectrum. In order to understand what the cepstral coefficients
represent, consider again the spectrum of Figure 2.5. If this spectrum is
treated as a time domain signal and processed by a Fourier transform, the

resulting low "frequency" ccmponents (called quefrency cmponents) will be
related to the overall shape of the power spectrum, and the high

"frequency" components will be related to the pitch harmonics of the power
pectrum. These quefrency components of the transform of the power

7pectrum are called cepstral coefficients. In speech recognition, only the
Low quefrency cepstral coefficients are used in order to "smooth" out the

-itch harmonics of the spectrum.
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Cepstral coefficients have been used by several investigators [5,61

and have been reported to be equal to the best, if not superior to, the

other techniques for encoding speech for recognition purposes. Cepstral

coefficients are usually used with a Euclidean distance function to yield

the "sound similarity" between two speech sounds. It was shown by Gray and

Markel (71 that this is equivalent to measuring the Euclidean distance in

the log RMS spectral power domain. Using only the low quefrency cepstral

coefficients in the distance function is equivalent to measuring the

Euclidean distance in a smoothed log RMS spectral power domain. In other

words, the cepstral analysis in its preferred form differs only in minor

ways from the Fourier transform and bandpass filter approaches.

In developing these speech analysis techniques for CCD implementation

there are two questions of concern: bw accurately do each of these signal

parameterizations represent speech at a given data rate, and how effective

is the CCD approach to computing these parameters?

The answer to the first question, how "good" are the four

representations, depends on how they are implemented in a speech

recognition system. There is no universally agreed upon "proper way" to

use these representations. We have implemented them using generally
accepted principles, which we think are the best for the given constraints.

Our conclusion is that three of the four techniques (BPF, DFT, and

Cepstral) produce speech parameters that are essentially equivalent, or can

be made equivalent, in theory. In practice, differences will arise

because of the differing effects of time windowing, dynamic range, and

number of equivalent bits of accuracy in the internal operations of the

devices.

The second question, how effective is the CCD approach in each case,

is the topic of the next chapter.
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2.3 Experimental Test Paradigm

The word recognition tests used for testing algorithms and for

comparing CCD analyzer processing techniques are speaker dependent, with

each speaker using simple one word templates. For each test vocabulary, a

test speaker recorded the vocabulary five times. Each vocabulary

repetition for that speaker was used in turn as a set of templates and

compared against the other four repetitions by the same speaker as test

utterances.

It has been well documented that template clustering and multiple

template techniques improve recognition performance [8]. Therefore the

results reported in Chapter 6 should not be taken to indicate the best

possible performance for the techniques studied, but rather only their

relative performance.

2.4 Developmental Simulation Studies

Two activities were undertaken to support the work that is reported in

the following chapters. First, the four algorithm speed-up techniques

described above were developed and studied on an existing AWR system

implemented on a PDP-II/60. For speech analysis, this system used an LPC-

10 analysis program to obtain 10 LPC reflection coefficients every 22.5 ms.

During the algorithm speed-up development, the following effects were

observed. Because of the large frame size in this system, Variable Frame

Rate Encoding was not very effective. Reducing an already slow frame rate

degrades performance. However, the technique could be helpful for a OCD

analyzer with a higher frame rate.

Similarly, principal coaponent dimensionality reduction was not very

effective for reflection coefficients. However, we expect that it might be

more effective for something like bandpass filter analysis, where the

coefficients are more highly correlated.
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C orner pruning and tenplate pruning showed great promise in the

developmental studies. Approximately 60% of the dynamic programing matrix

could be ignored by corner pruning without significantly degrading the

performance. On the average, teoplate pruning provided a 30% reduction in

the number of tenplates processed without significantly degrading

performance. The actual effect of these techniques in the realtime AWR

system is discussed later.

The second activity of the developmental simulation studies was to

generate and test simulated OD analyzer outputs. (D simulations for the

four speech analysis techniques investigated in this contract were
generated under a subcontract with Dr. Bob Brodersen at the University c

California, Berkeley. An anlog tape of four speakers repeating a 26
phonetic word vocabulary five times was processed by the simulation

software at Berkeley. 7he resulting digital tapes were delivered to lTI=D
for experimentation using the AWR system inplemented on the PDP-II/60.

Only a small part of this simulated data (one speaker over all( techniques) was studied for the following reasons. First and foremost was

the fact that the actual hardware devices themselves were being constructed

under our IR&D program. Results with actual hardware would be more

meaningful then that from a simulation study. However, the (CD simulation

data did enable us to become familar with the type of speech parameters

that the hardware would qenerate before it became available. Also, the

simulation data served as a backup in case the hardware developfment failed.

A second reason for limited testing of the simulation data was that at the

time of the testing the realtime AWR system had not yet been implemented.

The PDP-11/60 AWR system required considerable time to process the data.

Finally, problems were found with word endpoint detection in using the
simulated data. Although these problems could have eventually been

overcome, the required effort was not justified, once we decided to focus

our investigation on the hardware devices themselves.
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Chapter 3: DEVELDFO M OF CD SPEECH ANALYZERS

1b provide more realistic data for performance assessment, three of

the speech analysis techniques (BPF, DET, and Cepstral) were implemented

using actual OCD hardware. In addition, for each of the devices, special

purpose software was developed to make the respective speech parameters

suitable for a realtime recognition system. 'his chapter describes the

detailed design of each CD analyzer and its associated software.

It is not currently possible to implement the fourth speech processing

technique, LPC analysis, in OD hardware. 7he first step of the analysis,

namely the extraction of autoorrelation coefficients, was attempted in OCM

hardware by Dr. Brodersen at the University of California, Berkeley. The

autocorrelation coefficients generated by this device proved

unsatisfactory. However, recognition experiments were performed with

software generated autocorrelation and LPC coefficients. Results of these

experiments are presented in Section 6.2 for comparison with the other

three speech analysis techniques implemented in CCD) hardware.

3.1 CXD Analysis Hardware

All three of the speech analysis techniques implemented in CCD
hardware make use of 1eticon CCD devices. Two of the techniques (DFT and

Cepstral) share a Reticon spectral analyzer board and are contained in one

hardware unit, while the BPF OCD analyzer is a separate unit.

3.1.1 Bandpass Filter Hardware

The Banpass Filter (BPF) design uses nineteen switched-capacitor

iandpass filters to cover a frequency range of 100 Hz to 9500 Hz. Six

R5604 integrated circuits are used for eighteen 1/3 octave filters, and one

R5606 integrated circuit is used for a full octave filter covering the

higher frequencies. Figure 3.1 shows a block diagram of the BPF CCD

analyzer.
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The speech input is amplified, anti-aliased by a lowpass filter, and

then pre-emphasized by a 6 dB/octave slope beginning at 500 Hz. The signal

is then filtered by two switched-capacitor lowpass filters with cutoffs at

1.4 kHz for the lower frequency bandpass filters and 10.5 kHz for the

higher frequency bandpass filters. These lowpass filters act as anti-

aliasing filters to the bandpass filters. The output of each bandpass

filter is processed to obtain an approximation to the smoothed WIS value by

half wave rectification followed by a 30 Hz lowpass filter. The 19 analog

signals are simultaneously sampled and held once each 10 ms, Then they are

multiplexed into a single logarithmic A/D converter to produce 19 eight-bit

values every 10 ms. The frequency characteristics of each filter are

presented in Table 3.1.

3.1.2 Discrete Fourier Transform and Cepstral Hardware

The Discrete Fourier Transform (DF) analyzer and the Cepstral

analyzer share a Ieticon RC5601 spectral analyzer board which is based on

the R5601 chirp Z transformer (CZT) . The R5601 is an MOS intergrated

circuit which performs the bulk of the computation required to calculate a

512-point DFT. The circuit contains two separate 512-point CCD's which are

used to implement four transversal filters using the split-electrode

weighting technique.

The block diagram of Figure 3.2 illustrates the DFP and Cepstral

analyzers. The speech input is again preprocessed by amplification, anti-

aliasing filtering, and pre-emphasis. The speech is then processed by the

OCD spectrum analyzer, which is driven by a 20 kHz clock to obtain 512

Fourier magnitude coefficients every 25.6 ms. Switch 1 is then placed in

either the log or linear position, depending on whether cepstral (log
position) or Fourier (linear position) processing is desired. The

logarithm is calculated in an Intersil 8048 logarithmic amplifier. This

bipolar device uses the exponential characteristics of a diode to yield a

logarithmic transfer characteristic. Tnfortunately the device is sensitive

to offset-s as well as having a rather high noise level. Tb alleviate sone.

of the offset problems, DC offset controls were added to the input and

output of this device. In the bypass path (linear position of S), there
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Table 3.1 Characteristics of the 19 Channel CCD Filter Bank

Low High
Frequency Frequency

Cutoff Cutoff Center
Filter ,(-3 dB (-3 dB) Frequency Bandwidth

1 100 126 111 26
2 126 156 141 30
3 156 200 178 44
4 200 252 223 52
5 252 308 280 56
6 308 400 354 92
7 400 504 447 104
8 504 618 561 114
9 618 800 709 182

10 800 1008 894 208
11 1008 1228 1118 220
12 1228 1600 1414 372
13 1600 2016 1788 416
14 2016 2456 2236 440
15 2456 3200 2806 744
16 3200 4032 3576 832
17 4032 4912 4472 880
18 4912 6400 5612 1488
19 5000 9500 7250 4500
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(is also an offset control to obtain a DXC output voltage compatible with the

log amplifier path.

The original design of the CD Cepstral analyzer required another OCD-CZT

Fourier transform stage after log amplification to obtain cepstral

coefficients. It was found, homver, that the signal coming from the log

amplifier could not survive another analog OCD-CZT stage and still be

useful for speech recognition. The solution was to complete the cepstral

analysis in software after the signal was digitized. An A/D converter

accomplishes the digitization for both the linear and log spectrum signals.

It is driven by a 5 kHz clock to obtain 128 spectral values per frame at

the digital output.

3.2 (XD Analysis Software

The outputs of each of the OCD analyzers require additional processing

to yield speech parameters that are more suitable for a low cost, realtime

AWR system. This processing provides more effective recognition parameters

and reduces their data .rate so that memory and processing requirements can

be minimized for an AWR system. In the case of the Cepstral technique,

this processing is also needed to complete the analysis, since it is not

possible to perform the final Fourier transform in (XD hardware.

3.2.1 Bandpass Filter Software

Figure 3.3 shows a block diagram of the software added to handle the

output of the BPF OCD analyzer. The first step reduces the 19 filter

channel outputs to 16 coefficients by sunning the first three channels to

obtain the first coefficient and sunning the next two channels for the
second coefficient. This procedure follows work done by Pols (31. The

combination of these low frequency filters reduces the sensitivity of the

speech parameters to variations in the fundamental frequency of voiced

speech, by ensuring that there are always at lea3t two harmonics of the

fundamental within each coefficient. An amplitude measure is also computed

at this point by sunning all filter channel outputs.
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A new set of filter values representing a frane of data are produced

by the BPF analyzer every 10 ms. This data rate is then reduced by the

process of variable frame rate encoding discussed in the last chapter. The

distance threshold in this prcees was set to retain only about half of the

input frames.

Principal component dimensionality reduction is then applied to reduce

the 16 coefficients to 10 principal components. Multiplying the 16

coefficient frame vector by a matrix of 10 eigenvectors produces a new

vector of 10 coefficients which account for about 98% of the variance. 'The

three steps of channel summing, variable frame rate encoding, and principal

component dimensionality reduction, lower the original 15.2 kilobits/second

data rate to 4 kilobits/second for the BPF technique.

3.2.2 Discrete Fourier Transform Software

The data rate of the DFT CCD analyzer is higher than that of the BPF

analyzer. Every 26.5 ms, 128 eight-bit spectral values are produced by the

analyzer (38.6 kilobits/second). Figure 3.4 shows how this data rate is

reduced to 3 kilobits/second in two steps. The first step is again channel

summing. However, in this case, overlapping groups of channels are summed

in a manner that approximates a digital filter bank suggested by Klatt for

spectral matching of speech sounds [9]. Table 3.2 shows characteristics of

the resulting 32 channel filter bank. As with the BPF data, a principal

crmponent transformation then reduces these 32 coefficients to 10

ccefficients which account for about 93% of the variance in the data.

3.2.3 Cepstral Software

The cepstrum is defined as the Fourier transform of the logarithm

power spectrum. Typically the cepstrum is computed in three stages: a DFT

of the signal produces an n-point power spectrum, then a lcj o--t .ion

produces an n-point logarithm power spectrum, and finally another DFT

produces an n-point cepstrum. As explained in Section 2.2.4, only the low

quefrency cepstral components of the cepstrum are normally used for speech

recognition, and we intended to use only the first 10 of these
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Table 3.2 Characteristics of the 32 Channel Filter Bank
Created from CCD DFT Samples

Center DFPI

Filter Frequency Bandwidth Samoles
1 281 241 3 - 5

2 352 241 4 - 6

3 422 241 5 - 7
4 492 241 6 - 8

5 563 241 7 - 9
6 633 241 8- 10
7 703 241 9 -11
8 773 241 10 - 12
9 844 241 11 - 13

10 914 241 12 - 14

11 984 241 13 - 15
12 1055 241 14 - 16

13 1195 241 16 - 18

14 1336 241 18 - 20

15 1477 241 20 - 22

16 1617 241 22 - 24

17 1758 241 24 - 26

18 2074 452 27 - 32

19 2215 452 30 - 35
20 2496 452 33 - 38

21 2707 452 36 - 41
22 2918 452 40 - 452320452 44 - 49

24 3761 452 48 - 59
25 4113 452 53 - 64

26 4465 873 58 - 69

27 4887 873 64 - 75

28 5379 873 71 - 82

29 5941 873 79 - 90
30 6574 873 88 - 99
31 7277 873 98 - 109

32 8332 1366 109 - 128
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coefficients. Therefore the most efficient software replacement for the

final DFT stage of the cepstral analysis was not to perform a complete Fast

Fourier Transform (FFT), but rather to capute a partial Fourier transform

by convolving the log power spectrum with a set of 10 cosine transforms

[5]. Figure 3.5 summarizes these steps, and illustrates that the cepstral

analysis is realized by adding log amplification to the DFT signal within

the DFT analyzer, and then computing in software the dot products between

the 128 log DFT outputs and a set of 10 cosine tables.

%bile this type of cepstra. representation has been sucessfully used

for recognizing words, Davis and Mermelstein have shown [5] that better

speech recognition is possible if the cepstral coefficients are computed

from a power spectrum based on a rel frequency scale. The rel frequency

scale represents the spectrum linearly between zero and 1000 Hz, but

logarithmically from 1000 Hz to the highest frequency covered (9000 Hz in

this case). The mel frequency scale is derived from perceptual data on the

frequency response of the human ear, and thus mel frequency spectral

coefficients should better represent perceptually relevant aspects of the

short-time speech spectrum than should linear frequency coefficients. In
order to obtain the best. possible performance with the cepstral CCD

analyzer, ITIDCD devised a method of obtaining "mel cepstral" coefficients
without altering the frequency scale of the CD analyzer technique. Figure

3.6 illustrates how this is done. The cosine curves which are convolved

with the log power spectrum are stretched above 1125 Hz so that they cover

that part of the spectrum in a log manner. In addition (but not shown in
the figure), the individual cosine values along the stretched portion of

the curve are normalized by dividing by a value proportional to the amount
of stretching in that part of the curve. Thus equal parts of a cosine

curve contribute equally to the final coefficient value, independent of the
amount of stretching that each part undergoes.

Each CCD analyzer and its associated software were deveibped to

provide speech parameters suitable for realtime word recognition and

accordingly, each comprises a component in the realtime laboratory AWR

system which is described in the next chapter.
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Chapter 4: A RALTIME LABORATORY WORD ROOITICN SYSTEM

As the second task of this study, ITMCD implemented a realtime

laboratory AiR system. Tte major hardware coponents include the CID

speech analyzers, a Quintrell processor, a PDP-11/60 minicomputer, and two
display terminals. Realtime word recognition software was developed for

the Quintrell processor, a high speed s~gnal processor originally designed

by ITITCD for narrowband speech transmission system.

'ibe system operates in three modes: a realtime recognition mode, a

template generation mode, and an experimental mode. This chapter provides

a description of the various components, configurations, displays, and

operating modes of our versatile laboratory AWR system.

4.1 System Configuration

An overview of the various components of the AWR system is presented

in Figure 4.1. The system can be configured with any one of the three OCD

analyzers described in the preceding chapter. The software associated with

each CCD analyzer resides in the Quintrell processor, as does the

recognition software. Speech is input to the system via microphone or tape

recorder. The speech is parameterized by the OCD analyzer and passed on to

the Ouintre]1 for further processing.

The syE tem is controlled by the user from a PDP-11/60 display

terminal. The P)P and Quintrell communicate via the DR1-B, a high speed
direct memory access interface. PDP software controls this interface,

which is primarily used for transmittal of speech parameters in the form of

templates. PDP software also computes principal component (eigenvector)

matrices and, in conjunction with the UNIX operating system, provides for

the storage and retrieval of speech templates on disk.
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4.2 Recognition Software

The core of the recognition software operates in the Quintrell

processor and is independent of a particular OM analyzer. This software

is a realtime implementation of the dynamic programing algorithm described

in Section 2.1.1 and is depicted by functional flow in Figure 4.2. The

recognition process involves a omparison of parameters of the unknown word

to the parameters of a set of reference templates, each representing a

specific word. These cxmparisons are performed on a frame by frame basis

and account for the bulk of the comoutational load on the AWR system. The

role of the recognition software in the overall system is elaborated below

in a sequential description of the recognition mode.

At initialization of the recognition mode, a set of templates is sent

(on command) from the PDP computer to the Quintrell processor where they

are stored. If the system is configured with the BPF or DFT analyzer, the
eigenvectors associated with the template set are also transferred to the
Quintrell. The speaker then executes a "recognize" command from the PDP

terminal and says a word into the microphone. The speech signal is
parameterized by the selected (CD analyzer and sent to the Quintrell, where

the analyzer dependent processing described in Section 3.2 takes place.
The resulting speech parameters and energy function are then processed by

the recognition software on a frame by frame basis. The recognition

software monitors the energy function for detection of the beginning and
end of the utterance, and executes the dynamic programming algorithm.
When the end of the utterance is detected, the identity of the best

matching template is communicated to the POP and the recognized word is

displayed on the PDP terminal.

4.3 Operator Displays

During the recognition mode described above, a graphic display is

continuously updated by the Quintrell processor. An exanple of this
display is shown in Figure 4.3. Upon execution of a "recognize" command,

the energy profile of incoming speech moves from right to left across the
screen. As the beginning and end of the utterance are detected, dots mark

-43-

.€



Speech Iiilz

End NwUtrneBs
PointInrmnScig

DetectionUnnwStpTmle

ICCD-BP Varuntee
Inramen

Rateat

Encodingi

Elgen - PrincipleOfstCope

Vector Component Clm
Vcto 'TrainsformatO Sor

Matrix

ufe Euclidean Template

DitaceFamfCure

StoageSelect Best Update Path
Partial Path Storage

4 Figure 4.2 Major Steps In the Automatic Word Recognition System

-44-

_____________________7.



I

__ I

_________ '4.4
_____ .11 0

* -40.

__________________

0
0

* 0

____

0* m=
0 *

____________ bfl~ 0

*

0

U 2E.4

0

0)

4

-45-



their locations on the display. The energy display is frozen when the end
of the utterance is detected.

ihe upper half of the display shows a series of lines of varying

lengths, one line for each resident template or vocabulary word. The

height of the line represents the relative match score of the template.

This part of the display is also updated throughout the recognition

sequence and is also frozen at the end of the word. The shortest line

represents the best matching template and is marked with a dot.

The second operator display is controlled by the PDP-ll/60. At this

terminal, the "recognize" command is executed and the recognized word is

displayed. Moreover, it is this display which is used to configure and

control the modes of the laboratory AWR system. From this terminal, for

example, the user controls the settings of system variables and thresholds.

By a single omand, the user may activate corner pruning and template

pruning.

4.4 Tenplate Generation Software

lemplate generation or training is the process by which the AWR system

vocabulary is generated for a specific speaker. Isolated words are input

to the AWR system via a tape recorder or microphone. In this mode, much of

the AWR system operates in the same manner as in the recognition mode.

There are a few major exceptions. No principal ccoponent transformations

are performed in the Quintrell for the BPF and DFT analyzers, and the

dynamic programing algorithm does not operate. When the end of an

utterance is detected, the speech parameters and energy function for the

entire utterance are sent to the PDP-11/60 where they are stored on disk.

After a set of DFT or BPF templates have been produced by a given

speaker, PDP software generates an eigenvector matrix from the source

templates. This matrix is then employed to perform a linear transformation

on each template, thus producing a new set of principal ccmponent

templates, one for each of the original templates. The principal caoponent

templates are later used as reference templates in the Quintrell during the

-46-

7 - -7



recognition mode.

Fbr cepstral or mel cepstral analysis, no principal component

transformation is required. In this case, the same source templates

created in the template generation mode are used in the recognition mode.

4.5 Experimental (bntrol Procedures

In the course of this contract, a series of word recognition

experiments were conducted for each of the (CD analyzers. The laboratory

AWR system was used in a slightly different fashion in the performance of

these experiments. This use of the system is described below.

Vocabulary words were recorded on analog tape and processed separately

by each CD analyzer to produce recognition parameters for subsequent

recognition experiments. This process was the same as the foregoing

description of template generation. After templates had been generated

for the entire vocabulary, however, the CD analyzers and their associated

software were no longer needed and were therefore inoperative during the

recognition experiments.

In a typical recognition experiment, one repetition of the test

vocabulary was sent from the PDP-11/60 to the Quintrell to serve as

templates. For the BPF and DPT analysis techniques, the principal

omponent transformation associated with that repetition was also sent to

the (uintrell. Then the source template parameters for a word from another

repetition of the test vocabulary were sent to the Quintrell to serve as
the unknown utterance. The recognition software identified the unknown

utterance and passed the identification b-ck to the PDP-lI/60, along with

the best match scores for each of the resident templates. In like manner,

all the words in each vocabulary repetition (excepting the repetition being
used as templates) were sent to the Quintrell. The PDP-II/60 generated aun

experimental file containing recognition statistics. These statistics

included all template scores for each utterance as well as a tally of the

dynamic programming distance computations required during the course of the

experiment.
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Chapter 5: SPESXH RHOOMITIOJ DATA BASE

During the course of this contract, numerous word recognition

experiments were performed on ITIUCD's laboratory AWR system. In this

chapter, the data base used for these experiments is defined, and pertinent

tenplate generation procedures are discussed. The results of the word

recognition experiments are detailed in Chapter 6.

5.1 Data Base ontent

The data base used in the recognition experiments is based on the two
vocabularies shown in Table 5.1. The first is a 26 word phonetic

vocabulary that has a distinctive word for each letter of the alphabet.

The second is a 20 word cockpit vocabulary, consisting of the ten digits

and ten control words that might be useful in an aircraft voice input
appl icat ion.

Table 5.2 describes the three data sets that were constructed from

recordings of these two vocabularies. Data Set 1 consists of five
repetitions of the 26 word phonetic vocabulary by each of four speakers,

including two males and two females. Four new speakers (three males and

one female) recorded five repetitions of the 20 word cockpit vocabulary to

create Data Set 2. These same speakers also recorded five repetitions of

the 26 word phonetic vocabulary producing Data Set 3.

As described in Section 2.3, all experiments with the AWR system were

performed in a speaker dependent manner by running all word recognition
trials for a particular speaker against a set of word templates generated

by the same speaker. Each vocabulary repetition was in turn used as a set
of templates and compared against the other four repetitions as test

utterares. This experimental paradigm yielded a total of 520 (5 * 4 * 26)
trials per speaker for Data Sets 1 and 3 and 400 (5 * 4 *20) trials per

speaker for Data Set 2.
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Table 5.1 Vocabularies Used for Automatic Word Recognition Experiments

[.(
26 Word Phonetic Vocabulary

Adam Henry Otto Victor

Baker Ida Peter William

Charlie John Queen X-ray

David King Robert Young

Edward Lewis Susan Zebra

Frank Mary Thomas

George Nancy Union

20 Word Cockpit Vocabulary

Zero Five Altitude Clouds

One Six Heading Descend

Two Seven Speed Course

Three Eight Vertical Frequency

Four Niner Horizontal Kilometers

Table 5.2 Data Set Characteristics for Automatic Word Recognition Experiments

Data Set Vocabulary Speakers Repetitions Tests

1 26 Word MA (M) 5 520
Phonetic MB (M) 5 520

FA (F) 5 520
FB (F) 5 520

220 Word BB (M) 5 400
Cockpit BL (M) 5 400

RS (M) 5 400
WB (F) 5 400

3 26 Word BB (M) 5 520
Phonetic BL (M) 5 520

RS (M) 5 520
WB (F) 5 520
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I1
The e; r imental data base itself was created by processing the three

data sets through the laboratory AWR system operating in the template

generation mode. Data Sets I and 2 were processed three separate times by

the system, once for each of the three CCD analyzers. Data Set 3 was only

processed with the bandpass filter bank to provide additional test material

for that CCD analyzer.

5.2 Endpoint Determination

In a preliminary examination of the templates, a potential problem was

discovered. This problem involved the consistency of word beginnings and

ends across CCD analyzers. The beginning and ending detection for each

template had been determined by software algorithms, as described in

Section 2.2. %bile the same algorithm was used in all cases, the energy

function was computed independently for each CCD analyzer. This approach

resulted in occasional inconsistencies in endpoint detection for the same

utterance. An example of this problem is presented in Table 5.3, which

contains five repetitions of the utterance "Frank" for each of the three

OCD analyzers. Inspection of the energy profiles shows that the final

consonant "k" is missing from the third and fourth repetitions of the DFT

templates, and from the fourth repetition of the mel cepstral templates.

The full utterance is contained in all five of the BPF templates. .Note

that each template was intentionally "padded" with the five frames

preceding the starting point and eight frames after the end of the

utterance, thus permitting the subsequent manual adjustment of endpoints

where needed.

We reasoned that it was unfair to compare the recognition capabilities

of the three analyzers with varying segments of speech for the same word.

Thus, we decided to manually specify beginnings and ends on any utterances

where the software determinations were inconsistent across CCD analyzers.

Of the 2760 templates generated from Data Sets 1 and 2, less than 3 %

required such manual specification, and no manual changes were made on Data

Set 3 templates. It also should be noted that in a few cases, an incorrect
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endpoint was deliberately specified in a template to make the template
consistent with missing speech parameters in a corresponding template for

another CCD analyzer. %bile such specifications definitely lowered

recognition rates somewhat, they also provided for a better comparison of

the three (CI analyzers.

The foregoing discussion of 'anual" versus "automatically" determined

endpoints is intended to preface the next chapter, where experimental

results are presented. Fbr each set of experiments, the type of endpoints

used is specified.
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Chapter 6: RESULTS FROM LABOMRATRY WORD ROGNITICN EXPERIMENTS

This chapter provides the detailed results of the word recognition

experiments performed in the course of this contract. Three major groups

of experiments were conducted. The first series compared the word

recognition accuracies of the DFT, Cepstral and BPF CCD analyzers. The

second set of experiments evaluated the speed versus accuracy tradeoffs of

four speed-up techniques using BPF speech parameters. The third group of

experiments provided an additional performance evaluation of the Bandpass

Filter AWR system.

Each group of experiments was designed and conducted with the intent

of comparing alternative word recognition techniques and algorithms. None
of the experiments were intended to demonstrate the maximum achievable

accuracy of a realtime AWR system.

While all of the preceding chapters serve as background material for
these experiments, three previous sections are especially relevant to the

experimental framework: the experimental test paradigm discussed in
Section 2.3, the experimental control procedures of Section 4.5, and the

template endpoint discussion in Section 5.2.

6.1 Comparison Results for the CCD Analyzers

The CCD analyzers were evaluated by corparing their performance on the

laboratory AWR system. An initial set of experiments was conducted with

Data Set 1 to determine the relative performance of the cepstral and mel
cepstral analyses. These results are given in Table 6.1.
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Table 6.1 Cepstral and Mel Oepstral Word Pecogniton

Accuracies with Software Determined Endpoints

Data Mel

Set Speaker Trials Cepstral Cepstral

1. 26 Word MA (M) 520 91.0% 93.8%

Phonetic MB (M) 520 80.2% 92.7%

Vocabulary FA (F) 520 87.9% 94.0%

FB (F) 520 94.2% 94.6%

Total 2080 88.3% 93.8%

As anticipated, the mel cepstral analysis achieved higher word
recognition accuracy (93.8%) than did the cepstral analysis (88.3%). This

result is also confirmed on an individual speaker basis, though the
comparison is quite close for speaker FB. Based on these results, the mel
cepstral analysis technique was selected for further experiments and was
compared with the DFT and BPF techniques.

Recognition experiments were then conducted for each of the three

analyzers over Data Sets 1 and 2, with manually determined endpoints as

described in Section 5.2. The results of the final comparison are given in

Table 6.2.

The total accuracy over the eight speakers and two vocabulary sets
clearly shc~ws that the BPF technique outperformed the mel cepstral
technique, and that both of these techniques are better than the DFT

technique. It is significant that this rank order is also generally true

on an individual speaker basis. In addition, it is very encouraging that

such high accuracies were obtained in this first attempt to use CCD

analyzers. For example, the BPF system correctly recognized 97.5% of the

words tested in Data Set 1, and 99.7% of the words tested in Data Set 2.
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Table 6.2 DFT, Mel Cepstral, and Bandpass Filter Word Recognition
Accuracy with Manually Determined Endpoints

Mel
Data Set Speaker Trials DFT Cepstrum. BPF.

1. 26 Word MA (M) 520 95.8 97.5 98.8
Phonetic
Vocab. MB (M) 520 92.5 93.8 98.8

FA (F) 520 88.5 91.5 92.7

FB (F) 520 89.4 92.9 99.4

Sub Total 2080 91.5% 93.9% 97.5%

2. 20 Word BB (M) 400 99.0 99.3 100.0
Cockpit
Vocab. Bl, (M) 400 99.0 99.0 99.5

RS (M) 400 99.8 99.3 99.8

WB (F) 400 98.0 99.8 99.5

Sub Total 1600 98.9% 99.30/ 99.7%

Total 3680 94.7% 96.3% 98.4%
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Note that most of the errors in the BPF trials were attributed to one
female speaker, "FA". All other speakers had recognition rates exceeding

98.8%. Speaker FA also showed the poorest performance with the DFT and

mel cepstral analyzers, although for these devices she was responsible for

a lesser percentage of the total errors. The problems encountered with

speaker FA become clear when listening to her various repetitions of

certain words. She drastically changed her pronunciation of the words

"Adam," "Otto," and "Peter" n specific repetitions. Such a speaker

demonstrates the need for multiple templates for certain words in order to

enhance recognition accuracy on a given vocabulary.

Since the three speech parameter types (DFT, cepstrum, and BPF) are

considered essentially equivalent in theory, why did their respective word
recognition accuracies vary so consistently? Two explanations are offered.

First, both the DFT and mel cepstral analyzers have considerably lower

frame rates than does the BPF device. Even with variable frame rate

encoding, the BPF system generates about 50 frames per second, compared to

39 frames per second for both the DFT and mel cepstral analyzers.

Secondly, both the DFT and mel cepstral implementations are handicapped by

as much as a 15% error in the (CD generated estimate of the magnitude of

each spectral point. This is a result of the method used in the Reticon

CZT chip for approximating the spectral magnitude.

6.2 A Comparison of LPC and BPF Results

Since the Bandpass Filter was the most effective of the CCD analyzers,

we were interested in how it might compare to an LPC analyzer. Recognition
experiments were therefore conducted on ITrDCD's PDP-11/60 computer, using

software generated autocorrelation coefficients and resulting LPC

parameters for Data Set 1. The amplitude data which accompanied the

Berkeley generated autocorrelation coefficients was found to be in error.
Consequently, it was necessary to manually determine the word beginnings

and ends on all utterances of Data Set 1. In order to conduct a fair
comparison with the BPF analyzer, the word beginnings and ends were

likewise made consistent on Data Set 1 for the BPF parameters. The results

of 2080 recognition trials conducted on each of these data types are
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rI presente in Tble 6.3.

Table 6.3 Word Recognition Results for BPF and

Software Generated LR with Data Set 1 (2080 Trials)

Analysis % Aocuracy

BPF 98.5%

LPC 99.5%

A recognition accuracy of 99.5% was achieved on the LPC coefficients,

compared to 98.5% on the BPF. It should be noted that the frame rate on

the software generated LPC coefficients was 100 frames per second, compared

to approximately 50 frames per second on the variable frame rate encoded

BPF parameters. This difference my explain the higher accuracy of the
simulated L1C analyzer.

6.3 Speed/Accuracy Tradeoff Results for the BPF System

The results of the comparison experiments presented in Section 6.1

sed the Bandpass Filter to be the superior CMD analyzer for wrd

recognition. Terefore, BPF outputs were chosen as the appropriate

parameter base for a study of four speed-up techniques. The speed-up

techniques were designed to reduce data rates, template storage

requirements, and dynamic programming omputations. The speed/accuracy

experiments measured both the degree of speed-up and the accompanying

effect on recognition accuracy.

These experiments were conducted on the BPF parameters of Data Sets 1

and 2, thp same data used in the comparison experiments of Section 6.1,

where the beginnings and endings of certain utterances had been manually

specified. The bandpass filter results of Table 6.2 serve as a baseline
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for measuring the accuracy tradeoff of various speed-up techniques.

In order to measure the degree of speed up for these techniques, the

number of microcycles required by each component of the recognition

alqorithm was estimated. (on the Quintrell processor, a microcycle is 225
nanoseconds.) A formula was then devised to estimate the number of

microcycles required by the recognition algorithm for each frame of unknown
speech. Assuming 16 bandpass filter coefficients and an average word

length of 25 frames, the devised formula is:

MC = t ( 4860 + (1-d)125c - 3200d ) ,

where

MC = number of microcycles per frame of unknown speech
c = number of principal components

t = average number of active templates
d = percentage of distance calls eliminated by corner pruning

Ui
Thus for the baseline BPF comparison experiments on Data Set 1 (Table

6.2), c is 10, t is 26, and d is zero. In this case the formula yields MC

= 159,000 for the number of microcycles per unknown frame. For Data Set 2,

the baseline micicocycle count is 122,000. In the remainder of this

chapter, computational load refers to the percentage of microcycles
required compared to these baseline figures for computational load.

The remainder of this section presents the results of the various

speed-up experiments. The speed-up techniques themselves are described in

Section 2.1.2. At the end of this section, the results are summarized in

qraphic form for convenient reference.
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6.3.1 Variable Frame Rate Encoding

Variable frame rate encoding achieves a reduction in the data rate by

eliminating frames in which there is little change in the bandpass filter

coefficients. Various thresholds for a frame by frame distance metric were

tested to determine the appropriate threshold for cutting the data rate by

approximately 50 percent, from 100 frames per second to 50 frames per

second. The selected threshold was then used with variable frame rate
encoding to generate bandpass filter templates for Data Sets 1, 2, and 3.

Thus variable frame rate encoding was an inherent technique in all bandpass

filter experiments in this study. It alone produced a speed-up factor of

four, as the size of both templates and unknowns are halved. A 50%

reduction in template storage is also achieved by this technique.

No attempt was made to measure the recognition accuracy tradeoff for

variable frame rate encoding. Such a measurement would involve storage

and computational costs beyond the scope of this contract.

6.3.2 Number of Principal Coiiorents

Principal component analysis involves a linear transformation which

maps the 16 bandpass filter coefficients into an orthogonal space of the

same or a fewer dimensions. The eigenvectors which are employed in this

transformation are ordered so that the first orthogonal coefficient has the

maximum variance, the second coefficient has the second most variance, and

so on. In this study, a set of eigenvectors is associated with each

repetition of a vocabulary by a given speaker. Thus in Data Sets 1 and 2,

there are five repetitions by eight speakers, resulting in 40 sets of

'eigenvectors. For a given eigenvector set, the amount of variance in each

orthogonal dimension can be computed from the eigenvalues. These variances

were averaged over the 40 sets and are presented in Table 6.4, along with

the accumulated variance for successive sets of com[ponents.
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Table 6.4 Percentage of Variance Accounted for by Principal
Components for BPF Parameters from Data Sets I and 2

Principal Variance Cumulative
Component M Variance (%)

1 58.4 54.4

2 15.7 74.1

3 9.8 83.9

4 4.4 88.3

5 3.2 91.5

6 2.2 93.7

7 1.4 95.1

8 1.1 96.2

9 0.9 97.1

10 0.7 97.8

4[
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A A series of experiments was carried out to measure the effectiveness

7 of BPF recoqnition with different numbers of principal omponents. TLn

principal ccmponents had been used in the experiments discussed in Section

6.1. Further experiments were performed using seven, five, and three

principal components on Data Sets 1 and 2. The results are presented in

Table 6.5.

Table 6.5 Word Recognition Results with Varying Principal (omponents

for BPF Parameters from Data Sets 1 and 2 (3680 Trials)

Number of Recognition Computational

Components Rate % Woad %

10 98.4 100.0

7 98.1 93.6
5 97.8 89.4

3 96.5 85.3

The results indicate that the BPF system degrades only slightly when

using seven principal components. Principal component reduction yields a

modest reduction in computational load. This speed up is attained by

reducing the number of multiplies required in the principal component

linear transformation and by reducing the number of coefficients involved
in the dynamic programming distance metric.

The primary savings of principal component reduction is in storage

required for templates. For example, templates containing five principal

components require only half the storage of templates with ten principal

components.
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S( 6.3.3 Corner Pruning
I. Corner pruning is an effective technique for eliminating many frame to

* I frame comparisons in the dynamic programming algorithm. The corner pruning

bandwidth is defined as the number of horizontal frames to which the
dynamic programming alignment path is limited. For the baseline

experiments, there was nc such bandwidth limitation. Corner pruning
experiments were designed and wrformed on Data Sets 1 and 2 for bandwidths

of 7, 11, 15, and 19 frames. The number of dynamic programming distance

coiputations was recorded during these experiments so that the
conputational load could be accurately measured. The results of these

experiments are presented in Table 6.6.

Table 6.6 Word1Fecognition iesults with Corner Pruning for
BPF Parameters from Data Sets 1 and 2 (3680 Trials)

Corner Pruning Recognition Omputational

Bandwidth Rate % Load %

None 98.4 100.0

19 98.3 73.9

15 98.1 65.8

11 97.3 57.2

7 92.9 47.2

The results show corner pruning to be an effective speed up technique

at the proper bandwidth. At a bandwidth of 19 frames, over one quarter of
the computations can be eliminated with almost no decline in accuracy. At

narrower bandwidths, further speed up occurs, but recognition accuracy also
suffers.

If corner pruning is used, recognition errors tend to occur when the

unknown word is spoken at a much faster or slower rate than the appropriate

template for the word. That is, corner pruning errors occur when there is

a significant disparity in length between the unknown and the appropriate

template, in which case the bandwidth limitation prevents the proper
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dynamic programing alignment. This disparity is more likely to happen on

longer words. Reaognition results might therefore be improved if the

corner pruning bandwidth were varied according to the length of the

template.

6.3.4 Template Pruning

Template pruning is a technique whereby unlikely templates can be

eliminated from the dynamic programming process at some point prior to the

end of the unknown utterance. A template is pruned when its partial match

score exceeds the the best (lowest) partial match score plus a threshold.

Fbur threshold values were eventually chosen and experiments were conducted

on Data Sets 1 and 2. The number of active (unpruned) templates was

recorded during these experiments so that the reduction in computational

load could be measured. The results of these experiments are presented in

Table 6.7.

Table 6.7 Word Recognition Results with Template Pruning for

BPF Parameters from Data Sets 1 and 2 (3680 Trials)

Template Pruning Recognition Computational

Threshold Rate % Load %

None 98.4 100.0

150 98.4 55.2

100 98.4 41.4

75 98.0 33.8

The results show template pruning to be clearly the most powerful

speed-up technique, capable of reducing computations by 60 percent with no

decrease in accuracy. During most recognition trials, only two or three

templates remained active throughout the recognition process.
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6.3.5 Combined Template and Corner Pruning

TIemplate and corner pruning proved to be such effective speed-up

techniques that the evaluation of a combination of these techniques seemed

worthy of pursuit. The results of three additional experiments combining

both template and corner pruning are presented in Table 6.8.

Table 6.8 Word Recognition Results with Corner and Template Pruning

for BPF Parameters from Data Sets 1 and 2 (3680 Trials)

Template Pruning Corner Pruning Recognition Computational

Threshold Bandwidth Rate % Load %

None None 98.4 100.0

150 19 98.4 40.8

100 19 98.3 30.5

100 15 98.0 27.5

The combined pruning results match figures which could have been

predicted from the individual corner and template pruning experiments,

since the reductions in computational load are equivalent to the product of

template pruning reduction and corner pruning reduction. Table 6.8 shows,

for example, that 69.5% of the computational load can be eliminated with

only 0.1% decrease in recognition accuracy.

6.3.6 Summary of Spec i/Accuracy Tadeoff Results

A summary of the results obtained in this speed/accuracy tradeoff

study is presented graphically in Figure 6.1. The horizontal dimension

gives the percentage reduction in computational load, as well as the

equivalent speed-up factor, while the vertical dimension shows the added

error. Results are graphed separately for each of the speed-up techniques,

a-und for two combinations of corner pruning and template pruning. Since the

4upp-r right hand corner of the graph represents the most speed-up with the
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least decrease in accuracy, the figure clearly shows that template pruning
is the most effective single speed-up technique. The figure also indicatesthat the inclusion of conservative corner pruning further improves overall

performance. While the variable frame rate technique is not graphed in

the figure, it was inherent in all BPF experiments and was responsible for
a speed-up factor of four.

6.4 Additional Word Iecognition Results for the BPF system

Because of the superior recognition accuracy shown by the Bandpass

Filter CD analyzer in the comparisons presented in Section 6.1, it was

decided to gather additional performance statistics on the BPF system. Of

particular interest was the performance of the system with automatically

determined endpoints and with an extended vocabulary.

6.4.1 Results with Automatic Endpoint Detection

The further evaluation of the bandpass filter AWR system was

accomplished by conducting additional recognition experiments on Data Sets
1, 2, and 3. Ten principal components were used in all recognition trials.

Corner and template pruning were inoperative. Data Sets 1 and 2 had
already been evaluated in the (CD analyzer comparison experiments with

manually determined endpoints. In these overall performance experiments,

however, endpoint detection was erformed automatically by software

alqorithm.

The overall performance statistics for the laboratory BPF system with

automatically determined endpoints are presented in Table 6.9. Average

word recognition accuracies of 97.0%, 99.4%, and 98.5% were obtained for

Data Sets 1, 2, and 3.

The results for Data Set 2 show that the contract performance goal (at

least 99% accuracy on a 20 word vocabulary) was surpassed. The slight
discrepancies between these results for Data Sets 1 and 2 and those in

Table 6.2, are due to the differences between manual and automatic endpoint

detect ion.
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Table 6.9 Bandpass Filter Word Recognition Accuracies with
Automatically Determined Endpoints

Data Set Speaker Trials Accuracy

1. 26 Word MA (M) 520 98.7
Phonetic
Vocab. MB (M) 520 98.1

FA (F) 520 91.7

FB (F) 520 99.4

Sub Total 2080 97.0%

2. 20 Word BB (M) 400 100.0
Cockpit
Vocab. BL (M) 400 98.5

IRS (M) 400 99.8

WB (F) 400 99.5

Sub Total 1600 .99.4%

3. 26 Word BB (M) 520 98.3
Phonetic
Vocab. BL (M) 520 99.2

RS (M) 520 97.9

WB (F) 520 98.3

Sub Total 2080 98. 5ci

Total 5760 98.2%
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For the phonetic alphabet vocabulary (Data Sets 1 and 3), the most

Ccomuonly missed words in these experiments are presented in Table 6.10.

The word "Baker" heads the missed words list, being responsible for a total

of 15 recognition errors from 160 total trials. The overall recognition

rate on this word was still above 90%. "Baker" was missed at least once by

five of the eiqht speakers. The most commonly confused words were the

"David/Baker" combination. "David" was recognized as "Baker" ten
different times by four different speakers.

6.4.2 Results with a Larger Vocabulary

In order to assess the performance of the bandpass filter AWR system

on a larger vocabulary, experiments were conducted on the combined

vocabularies of Data Sets 2 and 3. The merging of these data sets resulted

in a 46 word vocabulary with five repetitions by each of four speakers,
three males and one female. The 46 words include the 26 word phonetic

alphabet list and the 20 word cockpit list. For each of the five
repetitions of the resulting 46 word vocabulary by each of the four

speakers, a new principal component matrix was computed.

Because of data memory limitations in the Quintrell processor, it was

necessary to use only five principal components in the combined vocabulary

experiments. To fairly evaluate the recognition performance on 46 words,

the results must be compared to individual experiments on Data Sets 2 and 3

that were also performed with five principal components. Such an

experiment had already been performed on Data Set 2 as one of the principal

component series discussed in Section 6.3.2. A similar experiment therfore
was performed on the 26 word vocabulary of Data Set 3 using five principal

components.

Table 6.11 presents the results for a larger vocabulary. To provide a

convenient reference, the table shows the averaged recognition accuracies

for Data .Sets 2 and 3 treated separately. These results are given for both

ten and five principal cxionents, and indicate that reducing the number of

orincipal components used in the recognition process lowers overall

accuracy by 0.3%. The last row in Table 6.11 shows that 97.7% correct
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Table 6. 10 Most Commonly Missed Words from the Phonetic Vocabulary of
DaaSets 1 and 3 (160 Trasper Word, 4160 Total Trials, 96 Total Errors)

Vocabulary Number Number of Conhised
Word of Misses Speakers with (Times)

Baker 15 5 David (7)

Edward (6)

Others (2)

David 12 5 Baker (10)

Others (2)

Peter 12 3 Union (8)

Victor (4)

Charlie 10 2 John (9)

*1others (1)

Victor 9 3 Baker (7)

Others (2)

Adam 8 5 Ida (3)

X-ray (3)

Others (2)

Otto 8 5 Ida (5)

Others (3)
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recoqnition resulted for the enlarged 46 word vocabulary. Ibis coapares to

98.6% averaged recognition accuracy for the two data sets treated

separately, a decrease of 0.9%.

Table 6.11 Bandpass Filter Word Recognition Results for a Larger

Vocabulary (3680 Trials, No Corner or Template Pruning)

Eperimental Vocabulary Principal Recognition

Conditions Size (s) Caponents Accuracy %

Data Sets 2 & 3 Separate; 20 & 26 10 98.9

Results Averaged Words

Data Sets 2 & 3 Separate; 20 & 26 5 98.6
Results Averaged Words

Data Sets 2 & 3 Merged 46 words 5 97.7

An additional 35 errors occurred over the 3680 trials of the enlarged

vocabulary experiment. It should be noted that only 13 of the 35 errors

were "across vocabularies", that iswords in the phonetic vocabulary being

confused with words in the cockpit vocabulary, and vice versa. Iis

indicates that the remaining 22 new errors were the result of the new

principal coponent matrices computed for this experiment. All of these

matrices were generated from the BPF coefficients of the 46 word vocabulary

and thus provide a linear transformation for a more variable range of

sounds than the principal ccoponents matrices derived from the 20 or 26

word vocabularies. Based on these results, we have hypothesized that for a

larger vocabulary, more principal components may be required to achieve the

same level of recognition accuracy.
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An additional experiment on the sa e data was performed with corner

pruning and tenplate pruning. The corner pruning bandwidth was set at 19

and the tenplate pruning threshold at 100. A recognition accuracy of 97.3%

was achieved. The drop in accuracy is slight (0.4%), but greater than that

of similar experiments with smaller vocabularies. The reduction in

coputational load is estimated at 75% for this experiment, corresponding

to a speed-up factor of four.
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Chapter 7: PRa3ETONS FOR DOW OST AUIOAATIC WOD R3 O2lTCN SYSTEMS

The previous chapters in this report give an affirmative answer to the
question: Can OD devices be used to generate speech recognition parameters

that are useful for accurate low cost speech recognition? This chapter

addresses a second basic question: What would be the cost for a realtime

AWR system, using a CCD analyzer and current microprocessor technology?

7.1 The Design of a Microprocessor Based AWR System

In order to develop meaningful cost estimates, a low cost

microprocessor architecture was designed to implement the realtime AWR
system discussed in the previous chapters. The system uses speech

parameters generated by the (CD analyzers as input. The microprocessor

architecture was evaluated in terms of cost and complexity for solving

various isolated word recognition problems using three different

microprocessors: the 8-bit Intel 8085A, the 16-bit Motorola MC68000, and a
16-bit configuration of the AMD 2901A. These devices represent three

classes of commonly available microprocessors.

The design analysis presented here is based primarily on a component

analysis of the realtime Quintrell AWR system. However, since the realtime
system was not completed until late in the contract, speed-up/accuracy

estimates of the corner pruning and template pruning for the microprocessor

study wre based on recognition tests performed on the PDP-11/60 AWR system

reported in Chapter 2. These tests indicated that about 60% of the dynamic

programming matrix could be eliminated by corner pruning, and 30% of the
templates could be eliminated by template pruning without significantly
lowering performance. results for the realtime laboratory AWR system

reported in Chapter 6 showed that less of the dynamic programminq matrix
could be eliminated by corner pruning, but twice the number of templates

could be be eliminated by template pruning without significantly lowering

performance. The net result was a scmewhat greater reduction in

computational load than that reported in Chapter 2. Thus, the results of
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the computational analysis given here for the microprocessor design would

improve somewhat if the newer speed-up/accuracy estimates were

incorporated.

Figure 7.1 shows a block diagram of the complete microprocessor AWR

system. The system was designed to use the CCD BPF analyzer. This choice,

however, is reflected in the code only by the inclusion of the variable

frame rate encoding algorithm and the principal component transformation.
Only minor changes would have to be made if another CCD analyzer was

selected. Flor example, the OMJ rel cepstral analyzer (as developed for

this study) does not use the variable frame rate encoding algorithm, but

would require a linear transformation based on the mel cosine curves.

There are two modifications in this system relative to the AWR system

used for the evaluation of the OD BPF analyzer. First, only five

coefficients are produced by the principal component transformation,

instead of the ten used in the laboratory evaluation. This modification
halves template storage requirements and increases recognition speed. It

was shown in Chapter 6 that using five coefficients rather than ten lowered

the recognition performance by only 0.5%. The reason for such small

performance degradation is that the first five coefficients carry about 92%

of the variance of the speech data, and coefficients 6 through 10 include

only about 6% of the variance.

The second modification is to lower the precision of the eigenvectors

in the principal conponent transformation from 16 bits to 8 bits. This

reduces storage requirements for the matrix and reduces the cost, size, and

power consumption of the multiplier needed for the principal component

transformation. Though no tests were conducted in this mode, the

modification should have little effect on the performance of the system

since the eiqenvectors serve only as a constant weighting function for the

original 16 coefficients to obtain the reduced set. Empirical evidence

indicates that the range of eigenvectors can be adequately represented in

eight bits.
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7.2 Microprocessor Architectures

In determining the suitability of microprocessors for an AWR system,

two different architectures were designed and evaluated. The first divides

the total processing requirements between one master microprocessor and

several slave microprocessors. The second approach uses several

microprocessors that are ganged together in parallel.

The performance estimates for the microprocessors were derived by code
translation from the Quintrell processor assembly language level code for
the laboratory AWR system. The critical areas (distance computation and

the principal component transformation) were translated in detail to the

8085A, C68000, and 2901A assembly languages. The less critical areas were

estimated by multiplying Quintrell execution times by the ratios obtained

from detailed benchmarks. Approximate throughput ratios relative to the

Quintrell (excluding multiplications) are given for these estimates in

Table 7.1.

Table 7.1 Approximate Throughput Ratios (Excluding Multiplications)

for Several Processors

Processor Throughput Ratio

Quintrell 1.0

8085A 0.1 (8-bit operations)

MC68000 0.45

2901A 1.5

The microprocessors must be augmented with a hardware

multiplier/accumulator to perform the principal component transformation.

The slave processors compute the squaring within the distance calculation

by table lookup. Memory size estimates were obtained from the code

translation and rounded up.
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7.2.1 Master-Slave Architecture

In the first architecture configuration, the two regions outlined in

Figure 7.1 indicate how the processing would be divided between master and
slave microprocessors. The ccrputationally intensive inner loop of the
dynamic proqraming recognition algorithm (the smaller region in Figure

7.1) is performed by a slave processor for several templates in realtime.
The required number of slaves depends on the number of word templates to be

recognized. In addition, the number of slaves that can be controlled by

one master is limited. If a large number of templates are required,

several master-slave systems would work in parallel with the templates
distributed equally amongst them. The CCD analyzer output is distributed

to all processors simultaneously. Figure 7.2 shows this architecture.

The master-slave architecture was evaluated for the Intel 8085A and

the Motorala MC68000 microprocessors. Figure 7.3 presents a block diagram
of the 8085A architecture configuration. The master processor consists of
an 8085A CPU, 2 K bytes of PRC4 program memory, 4 K bytes of RAM memory for

template storage (20 templates) and working area, a USART for serial
comunications, and interrupt control and bus interface circuitry. It is

assumed that the master processor generates the timing for the system. The

serial I/O is for communicating the recognition results and other data to

(or from) a TIY, CRT, host processor, or other compatible device.

The slave processors are simpler. Each slave consists of an 8085A
CPU, a 1.5 K byte program memory, and 1 K byte RAM memory for template

storage and working space. Each slave processor can handle just over two
templates in realtime, and each master processor can handle 10 slave

processors.

Each master processor is assumed to have 10 miscellaneous SSI and MSI

components, which are not shown in the figure. Each slave processor is is

assumed to have five miscellaneous SSI and MSI components.
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Oommunication between master and slaves is initiated by interrupts,

with each slave processor having a dedicated interrupt in the master.

Communication is between master and slaves only, that is, there is no
direct interchange between slave processors.

Figure 7.4 is a block diagram of the Motorola MC68000 architecture

configuration. The elements of the master and slave processors are very

similar to that in the 8085A implementation. The memory sizes are somewhat

larger because the processing capacity is greater - each slave can process

10 templates in realtime, compared to two for the 8085A. Comunication in

this architecture is the same as in the 8085A implementation.

7.2.2 Ganged Architecture

The second architecture that was investigated employs the more

powerful AMD 29011. in a bit slice configuration. The processing capacity

of the 2901A is such that a master-slave subdivision would not be

appropriate for vocabularies of up to several hundred words. If many word

templates are needed, a number of processors are ganged together as shown
in Figure 7.5, and the templates are divided amongst them. During

recognition, the CCD outputs are distributed to all processors
simultaneously. At the end of the utterance, Processor 1 makes the final

recognition decision based on its own results and on those of the other

processors. This final decision does not add significant computational
load for the vocabulary sizes considered. Figure 7.6 illustrates the

architecture configuration for one 2901A microprocessor. The design has

separate program and data memory, a hardware multiplier/accumulator (8-bit
by 8-bit), and a 2901A connected in a 16-bit configuration. The high

throughput capacity allows each processor to compare 38 templates in

realtime.
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7.2.3 Special Purpose Hardware

( AnoLhier consideration for the development of a low cost AWR system is

whether certain functions could be performed more economically with special
purpose hardware. The master-slave architecture was examined to

investigate this possibility for the "minimum" function in the dynamic

programming algorithm. It was determined that special purpose hardware

using MSI components would not be effective in this situation, because the

number of additional ccmponents required would not be offset by a

sufficient increase in throughput.

An ISI implementation of the "minimum" function could be cost

effective in high volumes. This might be especially true if it

incorporated other features, such as the capability to add the distance to

the selected minimum value. Custom ISI implementations of special purpose

hardware, however, were felt to be beyond the scope of this analysis and

were therefore not pursued further.

7.3 Cost Analysis for a Microprocessor AWR System

1lb determine cost projections for a microprocessor AWR system,

estimates must be made for both the CD analyzers and the microprocessor

implementations. Such projections are more difficult for the CCD
analyzers, since new LSI chips would most likely need to be developed.

Cost estimates for '-he microprocessor portion of the AWR system are more

reliable because standard cogronents were used in the design.

7.3.1 CCD Analyzer Hardware Costs

There is very limited data on which to base (CD cost estimates.

Reticon currently markets a line of (CD analog processing chips, two types

of which were used in the speech analyzers for this study. The

DFT/Cepstral analyzer is based on a single chip Chirp-Z transformer

(R5601), and the Bandpass Filter analyzer is constructed with. six third-

octave filter chips (R5604) and a single octave chip filter chip (R5606).

Texas Instruments is developing a single chip version of a complete filter

hank, including rectifiers, low pass filters and multiplexed A/D. Dr.

Proderson at Berkely has also projected the feasibility of single chip
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autocorrelator which could be used with a single chip microprocessor to

perform LPC anaylsis. 710 estimate the cost of future XD speech analyzers,
therefore, we have assumed that appropriate single chip OD devices would

be available for each type of analyzer, and have based their costs on the

current 100 quantity selling price of Reticon chips of approximately equal
omplexity. Specifically excluded from the these estimates are the costs

for chip development, which could easily exceed several hundred thousand

dollars per device.

Table 7.2 summarizes the CCD analyzer cost projections. It shows that

each of the four analyzer types has a $300 OD chip as the main processing

conponent, along with hardware to perform analog preemphasis and anti-

aliasing. The LPC analyzer also includes a $45 single chip microprocessor.

In addition, the LPC, DFT, and Cepstral analyzers contain a $10 A/D or log

A/D chip. Quantity projections for total costs range from $306 for the BPF

analyzer, to $361 for the LPC analyzer. These differences are probably

insignificant given the assumptions on which the estimates are based. T4hat

is significant, however, is the fact that high quality speech analyzers

using CCD components should be available in the future for only several

hundered dollars.

7.3.2 Microprocessor Hardware osts

The microprocessors and architectures were compared by cost and

complexity for recognition tasks with different numbers of word templates.

The results are based on an average length template of 0.6 seconds (i.e. 30

frames after variable frame rate encoding; the word "frequency" is

typically about 0.6 seconds long). The results also reflect the goal that

processing is done in realtime, so that the identity of a spoken utterance

is available as soon as the end of the utterance is detected.

The cost estimates are based on the cost of IC's plus $1.00 per watt

to cover power supply costs. IC's were priced from current vendor quotes
in quantities of 100. The cost estimates do not include packaging,

testing, and related tasks, because these factors are highly dependent on

quantity, the efficiency of the manufacturer, environmental requirements,
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and other conditions.

Table 7.3 shows a comparison of the three architecture configurations

for three vocabulary sizes, assuming 60% corner pruning and no template

pruninq. The 8085A is clearly the least efficient. The 8085A approach is

not cost effective because each slave can only handle two templates in

realtime. The resulting large number of CPU's requires replication of

program memory. Also, use of data memory is less efficient and many

ctmpconents are needed for interprocessor communication. With less

effective corner pruning, as the Quintrell experiments suggest, each slave

can handle only one template, and this design becomes even less attractive.

The 68000 and 2901A cost comparison is fairly close. A clear

advantage of the 2901A implementation is that there is no master/slave

partitioning. The communication between master and slave processors is in

two directions and involves establishing bus control and command and data

interchange. The 2901A processors simply report recognition results at the

end of an utterance. Program development cost, documentation, testing, and

maintenance should be simpler for the single CPU design of the 2901A.

The same basic recognition hardware can process more vocabulary

templates by taking advantage of template pruning. For example, 30%

template pruning enables the effective vocabulary size to be increased by

30%, with only a small increase in hardware cost due to the requirement for

additional template storage memory. Table 7.4 shows the results of

combining 60% corner pruning with 30% template pruning for the more

attractive MC68000 and 2901A designs. Somewhat better results would be

obtained if the speed-up/accuracy estimates from the Quintrell experiments

were used. r4hile corner pruning was less effective in those experiment;

the additional template pruning more than compensated, yielding a net

improvement in speed-up/accuracy performance.

Another method for increasing the number of templates that can be

processed by the same basic hardware is to relax the requirement for

realtime response. Fbr example, a 0.6 second recognition response time

doubles the amount of processing time avaiable, and therefore doubles the
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Table 7.3 Cost Comparison of Three Microprocessor Devices for a
" Realtime AWR System (60% Corner Pruning; No Template Pruning)

Intel 8085A Motorola MC 68000 AM]) 2901 A
Vocabulary IC's M S $ IC's M S $ IC's P $

Size

20 135 1 10 1084 50 1 2 780 80 1 895

100 675 5 50 5420 194 1 10 2674 249 3 3050

300 2025 15 150 16260 582 3 30 8022 671 8 8412

M = Number of Master Processors

S = Number of Slave Processors
P = Number of Processors

Table 7.4 Microprocessor Cost Projections for a Realtime AWR
System with 30% Template Pruning (and 60% Corner Pruning)

Motorola MC 68000 AMD 2901 A
Vocabulary

Size 1C's M S $ IC's P $

26 56 1 2 849 82 1 976

130 224 1 10 2915 255 3 3294

390 672 3 30 8745 688 8 9104

Table 7.5 Microprocessor Cost Projections for an AWR System with
a 0. 6 Second Response Time (60% Corner Pruning; 30% Template Pruning)

Motorola MC 68000 AMD 2901 A
Vocabulary

Size IC's M S $ IC's P $

52 76 1 2 1076 87 1 1178

4 260 346 1 10 4395 270 3 3900

780 1038 3 30 13185 768 8 12344
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vocabulary size of a given system. In some applications of an AWR, such a
delay in response would not be prohibitive. It should be noted, however,

that this method also requires a corresponding increase in template storage

memory which increases the overall cost of the system by a small amount.

The net result of permitting a 0.6 second delayed response and increasing

the cost of template storage memory is shown in Table 7.5. With the 2901A,

such a relaxation of response time allows the vocabulary size to be

doubled, with only a 20% - 30% resulting increase in cost.

7.4 Overall AWR Cost Projections

Based on the preceding analysis, Table 7.6 presents a summary of the

overall cost projections for a microprocessor AWR system with a CCD speech

analyzer. The table contains data for the OCD Bandpass Filter analyzer,

which performed better than the DFT and (epstral analyzers in realtime

laboratory tests. It also uses the cost projections for the 2901A

microprocessor design with a 0.6 second response time, the configuration
that appears to be the most attractive for the vocabulary sizes being

considered. As Table 7.6 indicates, hardware costs for a complete system
should range between about $1,500 for a 52 word vocabulary, to about

$12,700 for a 780 word vocabulary.
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Table 7.6 Overall Cost Projections for a Microprocessor
AWR System with a CM Speech Analyzer

"Abcabulary CCD BPF 2901A Total Hardware
Size Analyzer Microprocessor ost

52 $306 $1,178 $1,484

260 $306 $3,900 $4,206

780 $306 $12,344 $12,650
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Chapter 8: CONCLUIONS AND R MDA TIONS

During this study, ITITDCD evaluated the feasibility of using Charge

Coupled Devices (CCD'S) and microprocessors to reduce the cost and
complexity of Automatic Word Recognition (AWR) systems. Three speech

analysis techniques were implemented using currently available CCD

hardware. These included a Bandpass Filter (BPF) analyzer, a Discrete

Fourier Transform (DFT) analyzer, and a Cepstral analyzer. For each of
these CXD analyzers, software was developed to make the respective speech

parameters more suitable for realtime word recognition. ITI'DD then
incorporated the CCD hardware and software into a realtime laboratory AWR

system and employed this system in a performance comparison of the three
(CD based speech analysis techniques. The laboratory AWR system was

further used as a test vehicle for experiments measuring the effectiveness
of various word recognition speed-up methods. Finally, ITI)CD designed and
evaluated architectures for microprocessor based versions of the realtime
AWR system and formulated cost projections for such systems.

ITDCD hi. drawn a number of conclusions from these development

activities and associated experimental results. The major conclusions are
discussed in the following section, while recommendations for future

investigations are presented in Section 8.2.

8.1 Conclusions

The major conclusion that has resulted from this study is that a

combination of (CD devices and microprocessors can provide an effective,

low cost Automatic Word Recognizer. Details supporting this conclusion are

summarized below.

1. CCD speech analyzers can provide speech parameters which are

useful for accurate word recognition in realtime. Recognition
accuracies exceeding 99% can be achieved on a 20 word vocabulary.
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2. Of the (CD speech analysis techniques carpared, the Bandpass

Filter analyzer provides the best parameters for isolated word

recognition. Over 3680 trials, the BPF analyzer produced less than
half as many recognition errors as the second best technique, the

mel cepstrum analyzer. FUthermore, the BPF analyzer achieved a

higher recognition accuracy than the other CCD analyzers for seven

of the eight speakers used in the ccmparison experiments.

3. The second best CMD analyzer, the mel cepstrum technique, was

clearly superior to the third QCD analyzer, the DFT.

4. Mel cepstral analysis is superior to cepstral analysis as' a

word recognition technique.

5. All four of the speed-up algorithms which were studied are

worthwhile applications for an efficient realtime AWR system.

a. Variable frame rate encoding is an integral part of the
BPF technique and provides significant data rate and

template storage reductions.

b. T1emplate pruning is a powerful speed-up technique,

capable of reducing recognition computations by 60 percent

with no decline in recognition accuracy.

c. Principal component reduction provides template storage

savings and a modest computational speed-up.

d. Corner pruning is an effective speed-up technique which

can lower computations by 25% with little loss in accuracy.

6. Of the three microprocessor architectures evaluated as

potential low cost AWR systems, the Intel 8085A approach is clearly

the least efficient and least cost effective. Mhile the AMD 2901A

and Mototola MC68000 desi'ns are ccparable from a cost standpoint,

-91-



AD-AO84 7-43 ITT DEFENSE COMMUNICATIONS DIV NUTLEY N J F/6 9/2
SOLID STATE AUDIO/SPEECH PROCESSOR ANALYSIS. (U)
MAR 80 A R SMITH, B P LANDELL, G VENSKO F3060278-C0359

7UCLA5SSIFIEV RADC-TR-80-75 14L



the 2901A is preferable from a performance standpoint, particularly

with regard to throughput and simplicity.

7. Hardware cost projections for an AMR system featuring an AMD

2901A architecture and a Bandpass Filter OM analyzer should range

between $1,500 for a 52 word vocabulary, to about $12,700 for a 780

word vocabulary. These costs do not include custxn chip

development, detailed hardware design, construction or testing.

8.2 Rec mendations for Future Investigations

ITIDCD recognizes that many aspects of (CD analyzer and microprocessor

based AWR systems are deserving of further research and development. These

aspects include additional improvements to the AWR algorithms themselves,

the development and customer evaluation of a deliverable low cost AWR

system, and the extension of the AWR algorithms and hardware design to a

continuous speech recognition system.

Certain algorithms employed in the word recognition process might be

refined through further experimentation and analysis. Among these are

algorithms for detection of word boundaries (beginnings and ends) and for

variable frame rate encoding. Principal ccxmonent matrices (eigenvectors)

deserve further study with respect to the number of ccmponents versus

vocabulary size. The possibility of a speaker independent principal

component transformation for a specific vocabulary should also be explored.

In addition, better methods for generating vocabulary templates should be

developed that utilize clustering and averaging techniques. These methods

should result in less sensitivity to inter- and intra-speaker variablility

in the pronunciation of the vocabulary words.

Since such encouraging results were obtained with respect to word

recognition accuracy and hardware cost projections, we reccmuend the

development of a deliverable AWR system that is based on the ideas

formulated and tested here. 7b proceed with such a development, the AWR

system characteristics would have to be specified with respect to

vocabulary size, vocabulary subsetting, accuracy, and response time. Then
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a detailed system design would be ompleted and the An system constructed
and tested at the ITTlCD laboratory. This system could be delivered to the

Air Fbrce for additional testing and evaluation in an Air Pbrce laboratory

or operational environment.

Another promising area for further activity is the application of the

low cost MAR hardware and software concepts to the problem of recognizing

natural continuous speech. Recent experiments at ITIVCD have shown that

the dynamic approach to word matching can effectively locate words embedded

in conversational speech, without requiring the words to be separated by

pauses. These general concepts could be extended and enhanced for
continuous speech recognition to properly handle word boundary

coarticulation and other variablility effects. The OCD analyzers,

microprocessor architectures, and dynamic programming software should

significantly improve the prospects for accurate and affordable continuous

speech recognition systems.

-93-

_____________________________________________.-t#-



[1) Sakoe, H., and Chiba, S., "Dyamic Programming Algorithm Cptimization for
Spoken Word Recognition," IEW Trans. Acoust., Speech, Signal Prooessing,

Vl. ASSP-26, pp. 43-49, Feb. 1978.

[2] Harman, H., Modern Factor Analysis, Chicagot University of Chicago Press,

1967.

[3] IPls, L., wReal-Time Recognition of Spoken Words," I= Trans. on Computers,
Vol. C-20, No. 9, pp. 972-978, Sept. 1971.

[4] Itakura, F., "Minimum Prediction Residual Applied to Speech Recognition,
I Trans. Acoust., Speech, Signal Processing, Vol. ASSP-23, pp. 67-72,
Feb. 1975.

[5] Davis, S. B., and Mrmelstein, P., "Evaluation of Acoustic Parameters for
Monosyllabic Word Identification, "Journal Acoust. Soc. Am., Vol. 64,

Suppl. 1, pp. S180-S181, Fall 1978, (abstract).

[6] Atal, B., "Effectiveness of Linear Prediction Characteristics of the Speech
Wave for Automatic Speaker Identification and Verification," Journal
Acoust. Soc. Amer., Vol. 55, pp. 1304-1312, June 1974.

[7] Gray, A., and Markel, J., "Distance Measures for Speech Processing," IEEE
Itans. Acoust., Speech, Signal Processing, Vol. ASSP-24, pp. 380-391, Oct.
1976.

[8] Rabiner, L., Levinson, S., RJsenberg, A., and Wilpon, J., "Speaker
Independent Recognition of Isolated Words Using Clustering 1tLchniques,"
Conference Record of the 1978 IEEE Int. Conf. on Acoustics, Speech, and
Signal Processing, Cat. No. 79CH1379-7 ASSP, pp. 574-577, April 1978.

[91 Klatt, D., "A Digital Filter Bank for Spectral Matching," Conference Record
of the 1976 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing,
Cat. No. 76CH1067-8 ASSP, pp. 573-576, April 1976.

-94-


